Another approach is to use partial fraction
> $$ \frac{u}{b-au-u^2} = \frac{A}{u-\alpha}+\frac{B}{u-\beta} $$
where $\alpha, \beta$ are the roots of $ b-au-u^2 $. You need to determine $A$ and $B$. The answer will have the form
> $$ I = A\ln(u-\alpha)+B\ln(u-\beta)+C. $$
**Note:** Here are the roots
> $$ \alpha = -\frac{a}{2}+\frac{\sqrt {{a}^{2}+4\,b}}{2},\quad \beta = -\frac{a}{2}-\frac{\sqrt {{a}^{2}+4\,b}}{2} $$