(a) $P(X = 2) = P(\text{two get watered})\cdot P(\text{two live when watered}) + P(\text{two don't get watered}) \cdot P(\text{two live without water})$
$$= (0.95) \cdot \left({3\choose 2}(0.9)^{2}(0.1)\right) + (0.05)\cdot \left({3\choose 2}(0.3)^{2}(0.7)\right) = \boxed{0.2403} \\\$$
$\\\$
(b) $P(\text{neighbor remembered } \mid \text{one plant alive}) = \frac{P(\text{one plant alive} \mid \text{neighbor remembered}) \cdot P(\text{neighbor remembered})}{P(\text{one plant alive})}$
$$= \frac{\left({3\choose 1} \cdot (0.9)^{1} \cdot (0.1)^{2}\right) \cdot \left(0.95\right)}{(0.95) \cdot \left({3\choose 1}(0.9)(0.1)^2\right) + (0.05)\cdot \left({3\choose 1}(0.3)^{1}(0.7)^2\right)} = \boxed{0.537735849}$$
Note: ${n\choose k} = \frac{n!}{k!(n - k)!}$