Another approach would be to calculate the Wronskian.
The Wronskian of a finite family $f_1,\ldots, f_n$ of functions, which are $(n – 1)$ times differentiable on an interval $I$ is defined as the determinant $$W(f_1,\ldots,f_n)(x)= \begin{vmatrix} f_1(x) & \cdots & f_n(x) \\\ f_1'(x) & \cdots & f_n'(x) \\\ \vdots & \vdots & \vdots \\\ f_1^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}, \ x \in I.$$
If $W(f_1,\ldots,f_n)(x) \
eq 0$ for some $x \in I$, then the set $\\{f_1,\ldots,f_n\\}$ is linearly independent.
In your case, we would have that
$$W(e^{3t},te^{3t})= \begin{vmatrix} e^{3t} & te^{3t} \\\ 3e^{3t} & e^{3t} + 3te^{3t} \end{vmatrix}=e^{6t} > 0 \ \ \ \forall \ t \in \mathbb{R}.$$ Hence the set $\\{e^{3t},te^{3t}\\}$ is linearly independent.