Well, sure, they are all valid, if not particularly useful. Just consider the case $N=3$.
$$\mathsf E(X_1+X_2+X_3) ~{= \mathsf E(\mathsf E(X_1+X_2+X_3\mid X_1,X_2,X_3))\\\ =\mathsf E(\mathsf E(X_1\mid X_2,X_3)+\mathsf E(X_2\mid X_1,X_3)+\mathsf E(X_3\mid X_1,X_2)) \\\ = \mathsf E(\mathsf E(X_1\mid X_1,X_2,X_3)+\mathsf E(X_2\mid X_1,X_2,X_3)+\mathsf E(X_3\mid X_1,X_2,X_3)) } $$
* * *
When $N$ is itself a random variable, what might be more useful is:
$$\mathsf E(\sum_{k=1}^N X_k) = \mathsf E(\sum_{k=1}^N\mathsf E(X_k\mid N))$$
Particularly when each $X_k$ is an identical and independently distributed random variable (and independent of $N$ as well), this simplifies to:
$$\mathsf E(\sum_{k=1}^N X_k) = \mathsf E(N)\mathsf E(X_1)$$