Using Daniel Fischer's hint it is enouh to use the C-S inequality: $$\frac{1}{n}\int_{-n}^n|f_n(x)|dx \leq\frac{1}{n}\big(\int_{-n}^n1^2dx\big)^{1/2}\big(\int_{-n}^n|f_n(x)|^2dx\big)^{1/2}$$
$$=\frac{\sqrt{2}}{\sqrt{n}}\|f_n\|_2 \leq \sqrt{2}\|f_n\|_2\rightarrow 0$$.