Let $f$ be any bounded continuous function and $M$ be its supremum. Then $M-f$ is a non-negative continous function so $\lim \inf E(M-f(X_n)) \geq E(M-f(X))$. Cancelling $M$ we get $\lim \sup Ef(X_n) \leq Ef(X)$. Changing $f$ to $-f$ we get $\lim \inf Ef(X_n) \geq Ef(X)$. Hence $\lim Ef(X_n)=Ef(X)$.