$\
ewcommand{\Set}[1]{\left\\{ #1 \right\\}}$$\
ewcommand{\Span}[1]{\left\langle #1 \right\rangle}$$\
ewcommand{core}{\mathrm{core}}$I think the correct way of writing it is $\core_{G/N}(HN/N) = \core_{G}(H) N / N$.
But it does not hold true anyway.
Think of $G = S_{3}$, $N = \Span{(1 2 3)}$, $H = \Span{(1 2)}$.
We have $\core_{G}(H) = \Set{1}$, but $H N /N = G / N$, so $$\core_{G/N}(H N/ N) = G / N \
e \core_{G}(H) N / N = N / N.$$
The point being that in general $$ \bigcap_{g\in G} (gHg^{-1}N) \supsetneq (\bigcap_{g\in G} gHg^{-1}) N. $$