If $x\in A\cap(B\cup C)$, then $x\in A$ and $x\in B\cup C$.
$x\in B\cup C\implies (x\in B$ or $x\in C)$.
So, $x\in A\cap(B\cup C)\implies x\in (A\cap B)$ or $ x\in (A\cap C)$
$\implies x\in (A\cap B)\cup(A\cap C)$
$\implies A\cap(B\cup C)\subseteq (A\cap B)\cup(A\cap C)$.
Similarly,
if $y\in (A\cap B)\cup(A\cap C),$
$\implies y\in (A\cap B)$ or $y\in (A\cap C),$
$\implies y\in A$ and $y\in (B$ or $C)$
$\implies y\in A$ and $y\in (B \cup C)$
$\implies y\in A\cap (B \cup C)$.
Now, $A \subseteq B$ and $B \subseteq A \implies A=B$.