You have $\pi(A)=\pi(B)=0.5$. You want the posterior value $$\pi(A\mid\text{failure at }t)=\dfrac{\pi(A)f_A(t)}{\pi(A)f_A(t)+\pi(B)f_B(t)}.$$
The densities are $f_A=e^{-t}$ and $f_B=3e^{-3t}$ so $$\Pr(\text{type }A\mid\text{failure at }t) = \dfrac{0.5 \times e^{-t}}{0.5 \times e^{-t}+0.5 \times 3e^{-3t}}= \dfrac{1}{1+ 3e^{-2t}}.$$