$$ F[f''(x)+f(x)]=F[3\cos(2x)] $$
or
$$ ((i \omega)^2+1)F(\omega) = 3 \sqrt{\frac{\pi }{2}} \delta (w-2)+3 \sqrt{\frac{\pi }{2}} \delta (w+2) $$
and then
$$ F(\omega) = \frac{3 \sqrt{\frac{\pi }{2}} \delta (w-2)+3 \sqrt{\frac{\pi }{2}} \delta (w+2)}{((i \omega)^2+1)} $$
and finally
$$ F^{-1}\left(\frac{3 \sqrt{\frac{\pi }{2}} \delta (w-2)+3 \sqrt{\frac{\pi }{2}} \delta (w+2)}{((i \omega)^2+1)}\right) = -\cos(2 x) $$