Let me assume that you implicitly mean $G$ to be semisimple and the discrete subgroups to be (arithmetic) lattices.
Here's an example where they are not contained in a finite index overgroup. Namely $G=\mathrm{SL}_2(\mathbf{R})$ (you can do something similar in $G=\mathrm{SL}_d(\mathbf{R})$ for $d\ge 2$), $\Gamma=\mathrm{SL}_2(\mathbf{Z})$, and $\Lambda=g^{-1}\Gamma g$ with $g=\begin{pmatrix}2 & 0\\\ 0 & 1\end{pmatrix}$. Thus $$\Lambda=\left\\{\begin{pmatrix}a & b\\\ c & d\end{pmatrix}\in\mathrm{SL}_2(\mathbf{Z}[1/2]): a,d\in\mathbf{Z},b\in\frac12\mathbf{Z},c\in2\mathbf{Z}\right\\}.$$ Hence $\Omega$ contains the matrix $\begin{pmatrix}1 & 0\\\ 1/2 & 1\end{pmatrix}$, and hence its transpose as well (using conjugation by some integral matrix) and these generate $\mathrm{SL}_2(\mathbf{Z}[1/2])$, so $\Omega=\mathrm{SL}_2(\mathbf{Z}[1/2])$.