Per your statement, only one arrow hit the mark. That is possible when either archer A hit, and archer B missed, or the other way around. $$ p_1 = \mathbb{P}\left(\text{A hit} \land \text{B miss}\right) = \underline{\quad\quad\quad}? $$ $$ p_2 = \mathbb{P}\left(\text{B hit} \land \text{A miss}\right) = \underline{\quad\quad\quad}? $$ Since these events are exclusive (both can not happen at the same time), $\mathbb{P}\left(\text{only one hit}\right) = p_1 + p_2$. Now to answering the question $$ \mathbb{P}\left( \text{A hit} | \text{only one hit}\right) = \frac{\mathbb{P}\left(\text{A hit} \land \text{B miss}\right)}{\mathbb{P}\left(\text{only one hit}\right)} = \frac{p_1}{p_1+p_2} $$