$$\begin{align} P(K(t) = i) &= \sum_{n=0}^\infty P(K(t) = i \mid N(t) = n) P(N(t) = n) \\\ &= \sum_{n=i}^\infty \binom{n}{i} p^i (1-p)^{n-i} \cdot e^{-\lambda t} \frac{(\lambda t)^n}{n!} \end{align}$$ Can you take it from here?
> Continuing from above, use $\binom{n}{i} = \frac{n!}{i! (n-i)!}$ and some rearranging to obtain $$P(K(t)=i) = e^{-p \lambda t} \frac{(p \lambda t)^i}{i!} \cdot \underbrace{e^{-(1-p) \lambda t}\sum_{n=i}^\infty \frac{((1-p) \lambda t)^{n-i}}{(n-i)!}}_{=1}.$$ Do you recognize this PMF?