Theorem 1.3 of Montgomery and Vaughan's **Multiplicative Number Theory, I** states: Let $\sigma_c$ be the abscissa of convergence of $\sum_{n=1}^\infty f(n)n^{-s}$. If $\sigma_c<0$, then $F(x)$ is bounded. If $\sigma_c\ge0$, then $F(x)$ grows roughly like $x^{\sigma_c}$, in that $$ \limsup_{x\to\infty} \frac{\log |F(x)|}{\log x} = \sigma_c. $$ In particular, yes, polynomial growth of $F(x)$ is equivalent to $\sigma_c\
e+\infty$.