If you mean $$\lim_{x\to -\infty} \frac{1-e^x}{1+e^x}$$ then the limit is equal to 1, since $$\lim_{x\to -\infty} e^x=0$$ If you did actually mean $$\lim_{x\to -\infty} \frac{1-e^2}{1+e^2}$$ then since $\frac{1-e^2}{1+e^2}$ is independent of x, the limit is simply equal to $\frac{1-e^2}{1+e^2}$.