The proof is as simple as it gets:
$$
$$x_2=d_2+\frac{u}{DE}(e_2-d_2)$$
$$x_1+x_2=d_1+\frac{u}{DE}(e_1-d_1)+d_2+\frac{u}{DE}(e_2-d_2)=$$
$$x_1+x_2=(d_1+d_2)+\frac{u}{DE}((e_1+e2)-(d_1+d2))=$$
$$x_1+x_2=d_3+\frac{u}{DE}(e_3-d_3)=$$
$$x_1+x_2=x_3$$
Yes, it's all about "linearity".