The following polynomial gives a single 'tooth' on domain $[-1, 1]$. The higher $n$, the sharper the peak.
$$ p\left(x\right)=x\left(1-x^{2n}\right) $$
Repeat the function to extend the domain to $\mathbb{R}$:
$$ f\left(x\right)=p\left(\left(x\bmod 2\right)-1\right) $$
A screenshot from Desmos:
$ multiplications.