$$\iint_{0\leq x\leq y \leq \sqrt{x}\leq 1}\sqrt{x-y^2}\,dx\,dy = \int_{0}^{1}\int_{y^2}^{y}\sqrt{x-y^2}\,dx\,dy=\int_{0}^{1}\frac{2}{3}y^{3/2}(1-y)^{3/2}\,dy$$ by Fubini's theorem.
The last integral equals $\frac{2}{3}B\left(\frac{5}{2},\frac{5}{2}\right)=\frac{2\,\Gamma\left(\frac{5}{2}\right)^2}{3\,\Gamma(5)} =\color{red}{\large\frac{\pi}{64}}$ by Euler's Beta function.