Note that $$\sin(A-B)=\sin(A)\cos(B)-\sin(B)\cos(A)$$ And $$\cos(A+B)=\cos(A)\cos(B)+\sin(A)\sin(B)$$ and further more to gain a sine given a cosine of vice versa remember the pythagorean trigonometric identity, ie $$\sin^2(x)+\cos^2(x)=1$$ Thus $$\sin(x)=\pm\sqrt{1-\cos^2(x)}$$ $$\cos(x)=\pm\sqrt{1-\sin^2(x)}$$ and remember that the cosine of an obtuse angle is always negative.