The definition of the absolute value is $$|x|:=\begin{cases}x&x\ge 0\\\ or\\\ -x&x<0\end{cases}.$$
Therefore $$|x|>a\implies \begin{cases}x>a&x\ge 0\\\ or\\\ -x>a&x<0\end{cases}\implies x>a\text{ or }x<-a.$$
The definition of the absolute value is $$|x|:=\begin{cases}x&x\ge 0\\\ or\\\ -x&x<0\end{cases}.$$
Therefore $$|x|>a\implies \begin{cases}x>a&x\ge 0\\\ or\\\ -x>a&x<0\end{cases}\implies x>a\text{ or }x<-a.$$