According to the above comments the integral being used is Riemann which is equivalent to the Darboux integral hence we may use Upper and Lower sums to prove this. Since we assume the functions f and g to both be Darboux integrable then we may use only the Upper sums; Let $\displaystyle\sum_{i=1}^{n}M_{i}^{f}(t_i-t_{i-1})$ be the upper sum for f and $\displaystyle\sum_{i=1}^{n}M_{i}^{g}(t_i-t_{i-1})$ be the upper sum for g.
Given some partition of $[a,b]$ then note that $f(x)\le g(x)\le M_{i}^{g}$ for all $x\in [t_{i-1} , t_i]$ and i=1,...,n. Hence $M_{i}^{f}\le M_{i}^{g}$ for each i=1,...,n. So
$\displaystyle\int_{a}^{b}f(x)dx=\inf_{\text{partitions P of }[a,b]}\bigg(\sum_{i=1}^{n}M_{i}^{f}(t_i-t_{i-1})\bigg)\le \sum_{i=1}^{n}M_{i}^{g}(t_i-t_{i-1})$.
This is true for all partitions so
$\displaystyle\int_{a}^{b}f(x)dx\le\inf_{\text{partitions P of }[a,b]}\bigg(\sum_{i=1}^{n}M_{i}^{g}(t_i-t_{i-1})\bigg)=\int_{a}^{b}g(x)dx$ as we wanted.