I'm not sure but maybe you can use this: $$\|A\|\lim_{\|E\|\to 0}\|\frac{(EA^{-1})^2 + (EA^{-1})^3+\ldots}{\|E\|}\|\le\|A\|\lim_{\|E\|\to 0}\|\frac{\|(EA^{-1})^2\| + \|(EA^{-1})^3\|+\ldots}{\|E\|}\|=$$ $$=\|A\|\|A^{-1}\|^2\lim_{\|E\|\to 0}\|\frac{\|E\|^2 + \|E\|^3\|(A^{-1})\|+\ldots}{\|E\|}\|=$$ $$=\|A\|\|A^{-1}\|^2\lim_{\|E\|\to 0}({\|E\| + \|E\|^2\|(A^{-1})\|+\ldots})$$ If we want this equation $$(I-EA^{-1})^{-1} = I + EA^{-1} + (EA^{-1})^2 + (EA^{-1})^3+\ldots$$ we need $\|EA^{-1}\|<1$. That means $\|EA^{-1}\| + \|(EA^{-1})\|^2 + \|(EA^{-1})\|^3+\ldots$ converges to $\gamma$. And now we have $$\|A\|\|A^{-1}\|^2\lim_{\|E\|\to 0}({\|E\| + \|E\|^2\|(A^{-1})\|+\ldots})=\|A\|\|A^{-1}\|^2\lim_{\|E\|\to 0}({\|E\| + \|E\|*\gamma})=0$$