Artificial intelligent assistant

Compute and find 2009th decimal(2009th digit after the point), without automation, the following sum Compute and find 2009th decimal of (2009th digit after the point), without automation, the following sum $$\frac{10}{11}+\frac{10^2}{1221}+\frac{10^3}{123321}+ \cdots +\frac{10^9}{123456789987654321}$$

You can write your series as $$f(x)=\sum_{1}^{x}\frac{81\times10^k}{(10^k-1)(10^{k+1}-1)}=9\sum_{1}^{x}\frac{1}{10^k-1}-\frac{1}{10^{k+1}-1}$$ Where $x=9$. By telescopy we can show: $$f(x)=\frac{10^{x+1}-10}{10^{x+1}-1}=1-\frac{9}{10^{x+1}-1}$$ So your sum is $S=1-1111111111^{-1}=0.\overline{9999999990}$. So since $2009\equiv 9\pmod{10}$, the digit is $9$.

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 7fe37b5902d62df634a9a22ab7505fac