You do not need the regular part. If $\kappa > \omega$, $V_\kappa = H_\kappa$ if and only if $\kappa = \beth_\kappa$. (Kunen \textit{Set Theory} 78.)
Define $a_0 = \aleph_0$. Define recursively, $a_{i + 1} = \beth(a_i)$. Let $\alpha = \lim_{i< \omega} a_i$. $\beth(\alpha) = \alpha$. $\alpha$ has cofinality $\omega$. So $\alpha$ is a singular cardinal with $\beth(\alpha) = \alpha$.
I hope it is correct now.