Use Newton's identities:
$p_3=e_1 p_2 - e_2 p_1 + 3e_3$ and so $p_3-3e_3 =e_1 p_2 - e_2 p_1 = p_1(p_2-e_2)$ as required.
Here
$p_1= x+y+z = e_1$
$p_2= x^2+y^2+z^2$
$p_3= x^3+y^3+z^3$
$e_2 = xy + xz + yz$
$e_3 = xyz$
Use Newton's identities:
$p_3=e_1 p_2 - e_2 p_1 + 3e_3$ and so $p_3-3e_3 =e_1 p_2 - e_2 p_1 = p_1(p_2-e_2)$ as required.
Here
$p_1= x+y+z = e_1$
$p_2= x^2+y^2+z^2$
$p_3= x^3+y^3+z^3$
$e_2 = xy + xz + yz$
$e_3 = xyz$