An idea:
$$G\cong G'\implies \,\forall\,H'\le \Gamma'\;\exists\, H\le \Gamma\;\;s.t.\;\;G\cap H\cong G'\cap H'$$
because isomorphic groups have isomorphic subgroups. But then in fact
$$G'\cap H'\cong K'\cap H''\;,\;\;\text{for some finite index}\;\ K'\le\Gamma'\;\text{(same argument as above)} $$
and now remember that $\,[G:H]\,,\,[G:K]<\infty\implies [G:H\cap K]<\infty$