There are four complete columns of 5 and one with only 4 numbers. For column 1 there are: $$5! {15 \choose 5}$$ Since there are 5 numbers out of a possible 15 used in the column and these can be permuted in any order (in 5! ways). This also holds for the other 3 complete columns. The same method works for the column of 4 giving instead: $$4! {15 \choose 4} $$
Therefore the total answer is: $$ \left (5! {15 \choose 5} \right)^4 4! {15 \choose 4} = 552446474061128648601600000 $$