Observe that for any $\xi \in \mathbb{R}^m$, $$ \langle \xi, A^T A \xi \rangle_{\mathbb{R}^m} = \langle A \xi, A \xi \rangle_{\mathbb{R}^n} = \|A \xi \|^2_{\mathbb{R}^n}. $$ Now:
1. What do you know about the sign of $\|A \xi \|^2_{\mathbb{R}^n}$?
2. Given that the columns of $A$ are linearly independent, when is it possible for $\|A \xi \|^2_{\mathbb{R}^n} = 0$?