You may observe that, with $\displaystyle f_n(x)=\frac{x}{1+n^2x}$, $x \in [0,1]$, we have $$ (f_n(x))'=\frac{1}{(1+n^2x)^2}>0 $$ thus $\displaystyle f_n(x)$ is increasing with $x$: $$ 0<\sup_{[0,1]}f_n(x)=f_n(1)=\frac{1}{1+n^2} \leq \frac{1}{n^2}, $$since $\displaystyle \sum\frac{1}{n^2}$ is convergent, hence **your initial series is uniformly convergent in $[0,1]$.**