Standard calculus proves that $x^3-x^2-1$ has a single real root $x_1$, and $x_1>1$. It is also standard that the polynomial has two other roots $x_2$ and $x_3$ which are complex conjugates: $x_2=\overline{x_3}$, thus $|x_2|=|x_3|$.
By Vieta, $x_1x_2x_3=1$, thus $|x_2|^2=|x_2x_3|=\frac{1}{|x_1|}<1$, hence $|x_2|<1$.
Let $x_2 = re^{i\theta}$ and note that $x_2^n+x_3^n = r^n 2\cos(n\theta)$
But $r=|x_2|<1$, thus $\lim_n r^n 2\cos(n\theta) = 0$.
Hence $\lim_n x_2^n+x_3^n = 0$.