$(ad-bc)bd \le 0$
$\implies abd^2 - b^2cd \le 0 $
Since $f^2 \ge 0$ , multiplying with it, we get ,
$abd^2f^2 -b^2f^2cd \le 0$ -----A
Also ,
$(cf-de)df \le 0$
$\implies cdf^2 - d^2ef \le 0$
Since $b^2 \ge 0$, multiplying we get,
$cdb^2f^2 - efb^2d^2 \le 0$ ----- B
Now, $A + B$ gives ,
$abd^2f^2 -b^2f^2cd + cdb^2f^2 - efb^2d^2 \le 0 $
$\implies abd^2f^2 - efb^2d^2 \le 0$
$\implies d^2(af-be)bf \le 0 $
$\implies (af-be)bf \le 0 $, since $d^2 \ge 0$