Let $u=9\cos^2x-10\cos x\sin y-8\cos y\sin x$
As $-\sqrt{a^2+b^2}\le-(a\cos v+b\sin v)\le\sqrt{a^2+b^2}$
$\implies-\sqrt{(10\cos x)^2+(8\sin x)^2}\le-(10\cos x\sin y+8\cos y\sin x)\le\sqrt{(10\cos x)^2+(8\sin x)^2}$
$u\ge9\cos^2x-\sqrt{(10\cos x)^2+(8\sin x)^2}=(\sqrt{9\cos^2x+16}-1)^2-17$
Now $3\le\sqrt{16}-1\le\sqrt{9\cos^2x+16}-1\le\sqrt{9+16}-1=4$
$\implies3^2\le(\sqrt{9\cos^2x+16}-1)^2\le4^2$
$\cdots$