$\
ewcommand{\diam}{\text{diam}}$ $$\diam(A)=\sup\\{\|x-y\|\mid x,y\in A\\}\quad\text{and}\quad \diam(B)=\sup\\{\|x-y\|\mid x,y\in B\\}.$$ Since $A\subset B$,$$\\{\|x-y\|\mid x,y\in A\subset B\\}\subset \\{\|x-y\|\mid x,y\in B\\}.$$ The result follows. The thing you can add is the proof of $$A\subset B\implies \sup A\leq \sup B.$$