**Hint** : If $A^2=A$ then $A(A-1) \in I(A)$ so the matrix is diagonalizable with eigenvalues $0,1$. Let's now represent this diagonalized matrix:
$$J=\begin{pmatrix} 1 \\\ &\ddots \\\ &&1 \\\ &&&0 \\\ &&&&\ddots \\\&&&&&0\end{pmatrix}$$
What does this matrix to your vector when you do $J(v), v\in V$