I assume you want $H=\operatorname{span}\\{a,e_2,e_3,\ldots\\}$. Otherwise, $x=e_1$ makes your second statement false.
The set $\\{e_n\\}_{n\geq2}$ is not a basis because $\langle a,e_n\rangle=1/n\
e0$.
Any element $x$ of $H$ is of the form $$ x=x_1 a+\sum_{n\geq2} x_ne_n=x_1e_1+\sum_{n\geq2}(x_n+\frac{x_1}n)\,e_n, $$ with finitely many $x_n$ nonzero. From $x\perp e_n$, we get $$ 0=\langle x,e_n\rangle = x_n+\frac{x_1}n. $$ If we consider $n$ big enough so that $x_n=0$, we obtain $x_1=0$. But then $x_n=0$ for all $n$, and $x=0$.