Note that $|3x+6|$ is always non-negative. So, $|3x+6|\gt -12$ holds for every $x\in\mathbb R$.
For $|ax+b|\gt -c$ in the title,
* If $c=0$, then it always holds except $x=-\frac ba$ (for $a\
ot=0$).
* If $-c\lt 0$, then it always holds. (your case is included here)
* If $-c\gt 0$, we have $$|ax+b|\gt -c\iff ax+b\lt -(-c)\ \ \ \text{or}\ \ \ ax+b\gt -c$$
* * *
For $C\gt 0$, we have
$$|x|\gt C\iff x\lt -C\ \ \ \text{or}\ \ \ x\gt C$$ $$|x|\lt C\iff -C\lt x\lt C$$