**Hint** $$\phi(z,z)=az_1\bar{z_1}+bz_1\bar{z_2}+cz_2\bar{z_1}+dz_2\bar{z_2} \\\ =az_1\bar{z_1}+bz_1\bar{z_2}+\overline{bz_1\bar{z_2}} +dz_2\bar{z_2} \\\ $$
Now, since $a>0$ we can put it inside the conjugate
$$\phi(z,z)=a\left( z_1\bar{z_1}+\frac{b}{a}z_1\bar{z_2}+\overline{\frac{b}{a}z_1\bar{z_2}} +\frac{d}{a}z_2\bar{z_2} \right) \\\ =a\left( z_1+\overline{\frac{b}{a}}z_2 \right) \overline{\left( z_1+\frac{b}{a}\bar{z_2} \right)}+\mbox{ something }\\\ =a\left| z_1+\overline{\frac{b}{a}}z_2 \right|^2+\mbox{ something }$$