Since $x=\cos 3t$ and $y = \sin 3t$, by chain rule we have: $$ \dfrac{dx}{dt} = -3 \sin 3t \qquad \text{and} \qquad \dfrac{dy}{dt} = 3 \cos 3t $$ Hence, by product rule, we have: $$ \begin{align*} \dfrac{dV}{dt} &= \left(3x^2 \dfrac{dx}{dt}\right)(y^2) + (x^3)\left(2y \dfrac{dy}{dt}\right) \\\ &= (3\cos^2 3t) (-3 \sin 3t)(\sin^2 3t) + (\cos^3 3t)(2 \sin 3t) (3 \cos 3t) \\\ &= -9\cos^2 3t\sin^2 3t\sin 3t + 6\cos^3 3t\cos 3t\sin 3t \\\ \end{align*} $$