Define an equivalence relation $\sim$ on $[\omega]^\omega$ by $A\sim B$ iff $|A\mathop{\triangle}B|<\omega$, where the operation is symmetric difference. In each $\sim$-equivalence class $\mathscr{E}$ fix a representative $A_{\mathscr{E}}$. For each $B\in[\omega]^\omega$ let $\mathscr{E}(B)$ be the $\sim$-class of $B$, and let
$$c(B)=\begin{cases} 0,&\text{if }|B\mathop{\triangle}A_{\mathscr{E}(B)}|\text{ is even}\\\ 1,&\text{if }|B\mathop{\triangle}A_{\mathscr{E}(B)}|\text{ is odd}\;. \end{cases}$$
It’s not hard to check that $c$ is a $2$-coloring of $[\omega]^\omega$ with no infinite monochromatic set.
Let $Y=\left\\{B\in[\omega]^\omega:c(B)=0\right\\}$, and let $X=Y\cup\left\\{B\in[\omega]^\omega:1\
otin B\right\\}$. Then $[\omega\setminus 2]^\omega\subseteq X$, so $X$ is Ramsey. However, there is no $B\in[\omega]^\omega$ such that $[\\{1\\},B]\subseteq X$ or $[\\{1\\},B]\cap X=\varnothing$, so $X$ is not completely Ramsey.