For all this assume $f\
eq0$.
First, if $x\in M$ then $f(x)=1 ≤ \|f\|\,\|x\|$ and thus $\|x\|≥\frac1{\|f\|}$. The inequality holds when you pass to the infimum.
Next note that $\|f\|=\sup_{x\in E,\, \|x\|=1}|f(x)|$. For that reason for any $\epsilon>0$ there exists a norm one vector $x_\epsilon\in E$ so that $$\|f\|≥|f(x_\epsilon)|≥\|f\|-\epsilon.$$ By making $\epsilon$ small we may assume that $f(x_\epsilon)\
eq0$, then $\frac{x_\epsilon}{f(x_\epsilon)}\in M$ and you get: $$\frac1{\|f\|-\epsilon}≥ \left\|\frac{x_\epsilon}{f(x_\epsilon)}\right\|≥\inf_{x\in M}\|x\|.$$ This can be done for any $\epsilon>0$ small enough, so take $\epsilon\to0$ to achieve the remaining inequality.