Artificial intelligent assistant

Formula (how to calculate) Y axis cross-point of two intersecting lines i.e. I have two lines: ![]( A) Orange (`Y` axis starts at: `6`, end at: `-3`) B) Green (`Y` axis starts at: `5`, end at: `-2`) the start/end `X` axis values are same. Please note, I don't have SLOPE(angle) information, we only know what I've mentioned. How to calculate (what formula to use) to get the cross-point Y value? it's about 0.8 estimately (as I see visually), but what is the formula I cant reach... I've tried so far: mid_orange = (orange_start_Y + orange_end_Y )/2 mid_green = (green_start_Y + green_end_Y )/2 cross_point_Y= (mid_orange *m + mid_green *n )/2 I think I need correct `m` and `n` coefficients... I don't know...

1-method: The equations of the lines are: $$\begin{cases}y_{green}=-\frac93x+\frac{27}{3}\\\ y_{orange}=-\frac73x+\frac{22}{3}\end{cases} \Rightarrow (x_0,y_0)=(5/2,3/2).$$ 2-method: Use similarity of triangles:

$\hspace{3cm}$![enter image description here]( $$\triangle BEO \sim \triangle BFC \Rightarrow \frac{BE}{BF}=\frac{EO}{FC} \Rightarrow \frac{BE}7=\frac{EO}3 \\\ \triangle AEO \sim \triangle AGD \Rightarrow \frac{AE}{AF}=\frac{EO}{GD} \Rightarrow \frac{AE}9=\frac{EO}3 \\\ \begin{cases}7AE=9BE \\\ AE=BE+1\end{cases} \Rightarrow BE=\frac72 \Rightarrow y_0=5-\frac72=\frac32.$$

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 75b02fe30ae687a575396609d6edb39c