1-method: The equations of the lines are: $$\begin{cases}y_{green}=-\frac93x+\frac{27}{3}\\\ y_{orange}=-\frac73x+\frac{22}{3}\end{cases} \Rightarrow (x_0,y_0)=(5/2,3/2).$$ 2-method: Use similarity of triangles:
$\hspace{3cm}$![enter image description here]( $$\triangle BEO \sim \triangle BFC \Rightarrow \frac{BE}{BF}=\frac{EO}{FC} \Rightarrow \frac{BE}7=\frac{EO}3 \\\ \triangle AEO \sim \triangle AGD \Rightarrow \frac{AE}{AF}=\frac{EO}{GD} \Rightarrow \frac{AE}9=\frac{EO}3 \\\ \begin{cases}7AE=9BE \\\ AE=BE+1\end{cases} \Rightarrow BE=\frac72 \Rightarrow y_0=5-\frac72=\frac32.$$