Use Pascal’s identity a few times:
$$\begin{align*} \binom20\binom{m-2}2+\binom21\binom{m-2}1+\binom22\binom{m-2}0&=\binom{m-2}2+2\binom{m-2}1+\binom{m-2}0\\\ &=\left(\binom{m-2}2+\binom{m-2}1\right)+\\\ &\qquad\qquad\left(\binom{m-2}1+\binom{m-2}0\right)\\\ &=\binom{m-1}2+\binom{m-1}1\\\ &=\binom{m}2\;. \end{align*}$$
But why start at $n=2$? Starting at $n=0$ makes the base case very simple.