The downward Löwenheim-Skolem theorem continues to hold. The upward one does not; for example the infinitary formula $\bigvee_{n \in \omega} (x = n)$ has no uncountable models. This implies that the compactness theorem also fails, because it implies the upward Löwenheim-Skolem theorem.
This is all described in the usual references. You might start with the article on Infinitary logic at the Stanford Encyclopedia.