It is a square. Let inspect the unit norm ball. $$\mathcal{R}=\\{\textbf{x}\in\mathbb{R}^2:\Vert{\textbf{x}}\Vert_1\leq 1\\}$$
Let say, $\Vert{\textbf{x}}\Vert_1= 1.$ So, $$|x_1|+|x_2|=1.$$ **Case-1** When, $x_1,\ x_2 \geq 0,$ $$x_2=1-x_1.$$
**Case-2** When, $x_1 > 0,\ x_2 < 0,$ $$x_2=x_1-1.$$
**Case-3** When, $x_2 > 0,\ x_1 < 0,$ $$x_2=x_1+1.$$
**Case-4** When, $x_1, \ x_2 < 0,$ $$x_2=-(x_1+1).$$
So, now you can draw the region, and you will find that it is a square having vertices $(-1,0),\ (1,0), \ (0,1),\ (0,-1).$