$$x=6k+4\implies x=3(2k+1)+1$$
Thus if $$x\equiv 4\pmod {6} $$ then $$x\equiv 1\pmod 3$$
That is the system
$$\begin{cases} x\equiv 2 \pmod{3} \\\ x\equiv 4 \pmod{6} \end{cases}$$
is not consistent.
$$x=6k+4\implies x=3(2k+1)+1$$
Thus if $$x\equiv 4\pmod {6} $$ then $$x\equiv 1\pmod 3$$
That is the system
$$\begin{cases} x\equiv 2 \pmod{3} \\\ x\equiv 4 \pmod{6} \end{cases}$$
is not consistent.