We consider independent steps in $\mathbb{Z}$ with _three possible outcomes_ $\\{-1,0,1\\}$ and probabilities
\begin{align*} \mathbb{P}(X=-1)&=\mathbb{P}(X=1)=\frac{1}{4}\qquad\text{and}\qquad\mathbb{P}(X=0)=\frac{1}{2} \end{align*}
We look at walks with length $N\geq 0$ starting from $0$.
> These walks follow a _trinomial distribution_ , which is a specific instance of _multinomial distributions_. \begin{align*} \mathbb{P}(X_{-1}=a,X_{0}=b,X_{1}=c)&=\binom{N}{a,b,c}\left(\frac{1}{2}\right)^{2a+b+2c}\\\ &=\frac{N!}{a!b!c!}2^{-2a-b-2c} \end{align*} with $a+b+c=N$ and $a,b,c\geq 0$
>
> The probability to start at $0$ and stop at $K$ after $N$ steps is \begin{align*} \sum_{{a+b+c=N}\atop{{-a+c=K}\atop{a,b,c\geq 0}}}\binom{N}{a,b,c}\left(\frac{1}{2}\right)^{2a+b+2c}\qquad N\geq 0, -N\leq K \leq N \end{align*}
_Note:_ This _file_ presents some basic facts about the trinomial distribution.