Here is a counterexample: Let $S_{1},S_{2} \subset \mathbb{Z}^{\oplus 2}$ be the submonoids $S_{1} := \mathbb{N} \cdot (0,1) + \mathbb{N} \cdot (1,0)$ and $S_{2} := \\{\mathbb{N} \cdot (-1,1) + \mathbb{N} \cdot (1,0)\\} \setminus \\{(-1,1)\\}$ and let $R_{i} := \mathbb{Z}[S_{i}]$ be the monoid algebra. Then $R_{1} \simeq \mathbb{Z}[t_{1},t_{2}]$ is a polynomial ring over a normal ring, so it's normal; but $R_{2}$ contains $(t_{1}^{-1}t_{2})^{2}$ but not $t_{1}^{-1}t_{2}$ itself.