The tangent of the angle of elevation is the ratio of the dam height $h$ to the horizontal distance downriver of the observer. This gives us two equations for the height:
$$h=a\tan{(1.3)}=(155+a)\tan{(0.8)}$$
$$\implies a=\frac{h}{\tan{(1.3)}},~~~155+a=\frac{h}{\tan{(0.8)}}. $$
Subtracting the first equation from the second,
$$155=(155+a)-a=\frac{h}{\tan{(0.8)}}-\frac{h}{\tan{(1.3)}}=h\left(\frac{1}{\tan{(0.8)}}-\frac{1}{\tan{(1.3)}}\right).$$
Solving for $h$,
$$h=155 \text{ ft }\left(\frac{1}{\tan{(0.8)}}-\frac{1}{\tan{(1.3)}}\right)^{-1}\\\ \approx 223\text{ ft }.$$