$$\dfrac{d(\sin u)}{du}=\cos u$$
If $u=\arcsin x,\sin u=x$ and $\dfrac\pi2\le u\le\dfrac\pi2\implies\cos u\ge0$
and consequently, $\cos u=+\sqrt{1-x^2}$
and $$\dfrac{d(\arcsin x)}{dx}=\dfrac{du}{d(\sin u)}=\dfrac1{\cos u}=?$$
But we know $$\displaystyle\dfrac{dy}{\sqrt{a^2-y^2}}=\dfrac1{|a|}\arcsin\dfrac xa+K$$