Write $\log(x)=y$ then $x=e^y$ and as $x\to\infty$, $y\to\infty$.
You want to find $$\lim_{y\to\infty}\dfrac{y}{e^y}$$
But $e^y\geq 1+y+y^2/2!$ for any $y\in\mathbb R$ hence $$0\leq\lim_{y\to\infty}\dfrac{y}{e^y}\leq\lim_{y\to\infty}\dfrac{y}{1+y+y^2/2!}=0$$ so $$\lim_{y\to\infty}\dfrac{y}{e^y}=0$$